Evolution of C4 plants: a new hypothesis for an interaction of CO2 and water relations mediated by plant hydraulics.

نویسندگان

  • Colin P Osborne
  • Lawren Sack
چکیده

C(4) photosynthesis has evolved more than 60 times as a carbon-concentrating mechanism to augment the ancestral C(3) photosynthetic pathway. The rate and the efficiency of photosynthesis are greater in the C(4) than C(3) type under atmospheric CO(2) depletion, high light and temperature, suggesting these factors as important selective agents. This hypothesis is consistent with comparative analyses of grasses, which indicate repeated evolutionary transitions from shaded forest to open habitats. However, such environmental transitions also impact strongly on plant-water relations. We hypothesize that excessive demand for water transport associated with low CO(2), high light and temperature would have selected for C(4) photosynthesis not only to increase the efficiency and rate of photosynthesis, but also as a water-conserving mechanism. Our proposal is supported by evidence from the literature and physiological models. The C(4) pathway allows high rates of photosynthesis at low stomatal conductance, even given low atmospheric CO(2). The resultant decrease in transpiration protects the hydraulic system, allowing stomata to remain open and photosynthesis to be sustained for longer under drying atmospheric and soil conditions. The evolution of C(4) photosynthesis therefore simultaneously improved plant carbon and water relations, conferring strong benefits as atmospheric CO(2) declined and ecological demand for water rose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of Elevated Atmospheric CO2 Effects on Plant Growth and Water Relations: Implications for Horticulture

Empirical records provide incontestable evidence for the global rise in carbon dioxide (CO2) concentration in the earth’s atmosphere. Plant growth can be stimulated by elevation of CO2; photosynthesis increases and economic yield is often enhanced. The application of more CO2 can increase plant water use efficiency and result in less water use. After reviewing the available CO2 literature, we o...

متن کامل

Effects of climate change on water use efficiency in rain-fed plants

Water use efficiency (WUE) reflects the coupling of the carbon and water cycles and is an effective integral trait for assessing the responses of vegetated ecosystems to climate change. In this study, field experiments were performed to examine leaf WUE (WUEleaf) in response to changes in CO2 concentration and other environmental variables, including soil moisture and air temperature. We al...

متن کامل

An investigation on the possibility of use of chlorophyll fluorescence to study the stomatal behaviour in plants under drought stress

Stomata play a key role in the control of plant water relations and photosynthesis. A rapid non-destructive method to study the stomatal behaviour in aerial parts of plants is important for researchers in plant sciences and agricultural fields. Stomata close in response to drought stress. Stomatal closure causes lower availability of CO2 inside the leaf and thus a decrease in the rate of carbox...

متن کامل

How to make a C4 plant: insight from comparative transcriptome analysis.

Rubisco (for ribulose-1,5-bisphosphate carboxylase/oxygenase), the enzyme that catalyzes the first major step in carbon fixation, is notoriously inefficient in this role, owing to its function as an oxygenase as well as a carboxylase. Photorespiration, the pathway followed when Rubisco catalyzes the oxygenation rather than carboxylation of the substrate ribulose-1,5-bisphosphate, can reduce the...

متن کامل

Evolution of C4 photosynthesis--looking for the master switch.

C4 PHOTOSYNTHESIS—THE BASICS C4 photosynthesis is a unique blend of biochemical, anatomical, and gene regulatory characteristics. In the vast majority of C4 plants, i.e. with the exception of single-cell C4 photosynthesis in the Chenopodiaceae, this photosynthetic pathway is the result of the integrated metabolic activities of two distinct, specialized leaf cell types, mesophyll and bundle shea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 367 1588  شماره 

صفحات  -

تاریخ انتشار 2012